Markscheme

November 2015

Mathematics

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

R Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to RM ${ }^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking November 2015". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by $\mathrm{RM}^{\top \mathrm{M}}$ Assessor.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \boldsymbol{M} mark,
but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10
 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

Section A

1. (a) $0.818=0.65+0.48-\mathrm{P}(A \cap B)$
$\mathrm{P}(A \cap B)=0.312$
(b) $\mathrm{P}(A) \mathrm{P}(B)=0.312(=0.48 \times 0.65)$
since $\mathrm{P}(A) \mathrm{P}(B)=\mathrm{P}(A \cap B)$ then A and B are independent R1

Note: Only award the R1 if numerical values are seen. Award A1R1 for a correct conditional probability approach.
2. using technology and/or by elimination (eg ref on GDC)
3. (a) $\frac{0 \cdot 4+1 \cdot k+2 \cdot 3+3 \cdot 2+4 \cdot 3+8 \cdot 1}{13+k}=1.95\left(\frac{k+32}{k+13}=1.95\right)$
attempting to solve for k
$k=7$
(b) (i) $\frac{7+32+22}{7+13+1}=2.90\left(=\frac{61}{21}\right)$
(M1)A1
(ii) standard deviation $=4.66$

Note: Award $\boldsymbol{A O}$ for 4.77.
4. (a) (i) $A=-3$
(ii) period $=\frac{2 \pi}{B}$
$B=2$
Note: Award as above for $A=3$ and $B=-2$.

$$
\text { (iii) } \quad C=2
$$

A1
[4 marks]
(b) $\quad x=1.74,2.97\left(x=\frac{1}{2}\left(\pi+\arcsin \frac{1}{3}\right), \frac{1}{2}\left(2 \pi-\arcsin \frac{1}{3}\right)\right)$
(M1)A1
[2 marks]
Note: Award (M1)AO if extra correct solutions eg $(-1.40,-0.170)$ are given outside the domain $0 \leq x \leq \pi$.

Total [6 marks]
5. (a) (i) area $=\int_{2}^{4} \sqrt{y-2} \mathrm{~d} y$

M1A1

A1
[3 marks]
(b) volume $=\pi \int_{2}^{4}(y-2) \mathrm{d} y$
$=\pi\left[\frac{y^{2}}{2}-2 y\right]_{2}^{4}$
$=2 \pi$ (exact only)
(M1)
(A1)
A1
[3 marks]
Total [6 marks]
6. EITHER

M1A1A1
Note: Award M1 for a two-level tree diagram, A1 for correct first level probabilities, and A1 for correct second level probabilities.

OR
$\mathrm{P}\left(B \mid L^{\prime}\right)=\frac{\mathrm{P}\left(L^{\prime} \mid B\right) \mathrm{P}(B)}{\mathrm{P}\left(L^{\prime} \mid B\right) \mathrm{P}(B)+\mathrm{P}\left(L^{\prime} \mid C\right) \mathrm{P}(C)+\mathrm{P}\left(L^{\prime} \mid W\right) \mathrm{P}(W)}\left(=\frac{\mathrm{P}\left(B \cap L^{\prime}\right)}{\mathrm{P}\left(L^{\prime}\right)}\right)(\boldsymbol{M} 1)(\boldsymbol{A 1})(\boldsymbol{A} 1)$

THEN

$$
\begin{aligned}
& \mathrm{P}\left(B \mid L^{\prime}\right)=\frac{0.9 \times 0.2}{0.9 \times 0.2+0.95 \times 0.3+0.75 \times 0.5}\left(=\frac{0.18}{0.84}\right) \\
& =0.214\left(=\frac{3}{14}\right)
\end{aligned}
$$

M1A1

A1
7. $21=\frac{1}{2} \cdot 6 \cdot 11 \cdot \sin A$
$\sin A=\frac{7}{11}$

EITHER

$\widehat{A}=0.6897 \ldots, 2.452 \ldots\left(\hat{A}=\arcsin \frac{7}{11}, \pi-\arcsin \frac{7}{11}=39.521 \ldots, 140.478 \ldots \circ\right)$
OR
$\cos A= \pm \frac{6 \sqrt{2}}{11}(= \pm 0.771 \ldots)$

THEN

$\mathrm{BC}^{2}=6^{2}+11^{2}-2 \cdot 6 \cdot 11 \cos A$
$\mathrm{BC}=16.1$ or 7.43
Note: Award M1A1AOM1A1AO if only one correct solution is given.
8. (a) $A \int_{1}^{5} \sin (\ln x) \mathrm{d} x=1$

$$
A=0.323 \text { (3 dp only) }
$$

(b) either a graphical approach or $f^{\prime}(x)=\frac{\cos (\ln x)}{x}=0$

$$
x=4.81\left(=\mathrm{e}^{\frac{\pi}{2}}\right)
$$

Note: Do not award A1FT for a candidate working in degrees.
(c) $\quad \mathrm{P}(X \leq 3 \mid X \geq 2)=\frac{\mathrm{P}(2 \leq X \leq 3)}{\mathrm{P}(X \geq 2)}\left(=\frac{\int_{2}^{3} \sin (\ln (x)) \mathrm{d} x}{\int_{2}^{5} \sin (\ln (x)) \mathrm{d} x}\right)$

$$
=0.288
$$

Note: Do not award A1FT for a candidate working in degrees.
9. (a) $t_{1}=1.77(\mathrm{~s})(=\sqrt{\pi}(\mathrm{s}))$ and $t_{2}=2.51(\mathrm{~s})(=\sqrt{2 \pi}(\mathrm{~s}))$

A1A1
[2 marks]
(b) (i) attempting to find (graphically or analytically) the first $t_{\max }$

$$
\begin{equation*}
t=1.25(\mathrm{~s})\left(=\sqrt{\frac{\pi}{2}}(\mathrm{~s})\right) \tag{A1}
\end{equation*}
$$

(ii) attempting to find (graphically or analytically) the first $t_{\text {min }}$

$$
t=2.17(\mathrm{~s})\left(=\sqrt{\frac{3 \pi}{2}}(\mathrm{~s})\right)
$$

A1
(c) distance travelled $=\left|\int_{1.772 \ldots}^{2.506 \ldots} 1-\mathrm{e}^{-\sin t^{2}} \mathrm{~d} t\right|$ (or equivalent) $=0.711(\mathrm{~m})$
10. (a) $\quad a=\binom{-1}{4}$

$$
\boldsymbol{b}=\frac{1}{3}\left(\binom{4}{16}-\binom{-1}{4}\right)=\binom{\frac{5}{3}}{4}
$$

A1
(M1)A1
[3 marks]
(b) METHOD 1

Roderick must signal in a direction vector perpendicular to Ed's path.
the equation of the signal is $s=\binom{11}{9}+\lambda\binom{-12}{5}$ (or equivalent)
$\binom{-1}{4}+\frac{t}{3}\binom{5}{12}=\binom{11}{9}+\lambda\binom{-12}{5}$
$\frac{5}{3} t+12 \lambda=12$ and $4 t-5 \lambda=5$
$t=2.13\left(=\frac{360}{169}\right)$

METHOD 2

$\binom{5}{12} \cdot\left(\binom{11}{9}-\binom{-1+\frac{5}{3} t}{4+4 t}\right)=0$ (or equivalent)
Note: Award the M1 for an attempt at a scalar product equated to zero, A1 for the first factor and $\boldsymbol{A 1}$ for the complete second factor.
attempting to solve for t

$$
t=2.13\left(=\frac{360}{169}\right)
$$

continued...

Question 10 continued

METHOD 3

$$
x=\sqrt{\left(12-\frac{5 t}{3}\right)^{2}+(5-4 t)^{2}} \text { (or equivalent) }\left(x^{2}=\left(12-\frac{5 t}{3}\right)^{2}+(5-4 t)^{2}\right) \text { M1A1A1 }
$$

Note: Award $\boldsymbol{M} \mathbf{1}$ for use of Pythagoras' theorem, $\boldsymbol{A} \mathbf{1}$ for $\left(12-\frac{5 t}{3}\right)^{2}$ and $\boldsymbol{A 1}$ for $(5-4 t)^{2}$.
attempting (graphically or analytically) to find t such that $\frac{\mathrm{d} x}{\mathrm{~d} t}=0\left(\frac{\mathrm{~d}\left(x^{2}\right)}{\mathrm{d} t}=0\right)$

$$
t=2.13\left(=\frac{360}{169}\right)
$$

METHOD 4

$$
\begin{equation*}
\cos \theta=\frac{\binom{12}{5} \cdot\binom{5}{12}}{\left|\binom{12}{5}\right|\left|\binom{5}{12}\right|}=\frac{120}{169} \tag{M1A1}
\end{equation*}
$$

Note: Award M1 for attempting to calculate the scalar product.

$$
\begin{equation*}
\frac{120}{13}=\frac{t}{3}\left|\binom{5}{12}\right| \text { (or equivalent) } \tag{A1}
\end{equation*}
$$

attempting to solve for t

$$
t=2.13\left(=\frac{360}{169}\right)
$$

Section B

11. (a) (i) let W be the weight of a worker and $W \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$

$$
\begin{equation*}
\mathrm{P}\left(Z<\frac{62-\mu}{\sigma}\right)=0.3 \text { and } \mathrm{P}\left(Z<\frac{98-\mu}{\sigma}\right)=0.75 \tag{M1}
\end{equation*}
$$

$$
\frac{62-\mu}{\sigma}=\Phi^{-1}(0.3)(=-0.524 \ldots) \text { and }
$$

$$
\frac{98-\mu}{\sigma}=\Phi^{-1}(0.75)(=0.674 \ldots)
$$

or linear equivalents
A1A1
(ii) attempting to solve simultaneously

$$
\mu=77.7, \sigma=30.0
$$

(b) $\mathrm{P}(W>100)=0.229$
(c) let X represent the number of workers over 100 kg in a lift of ten passengers
$X \sim \mathrm{~B}(10,0.229 \ldots)$
$\mathrm{P}(X \geq 4)=0.178$
continued...

Question 11 continued
(d) $\mathrm{P}(X<4 \mid X \geq 1)=\frac{\mathrm{P}(1 \leq X \leq 3)}{\mathrm{P}(X \geq 1)}$
M1(A1)

Note: Award the M1 for a clear indication of conditional probability.
$=0.808$
A1 [3 marks]
(e) $L \sim \operatorname{Po}(50)$
(M1)
$\mathrm{P}(L>60)=1-\mathrm{P}(L \leq 60)$
(M1)
$=0.0722$
A1
[3 marks]
(f) 400 workers require at least 40 elevators
(A1)
$\mathrm{P}(L \geq 40)=1-\mathrm{P}(L \leq 39)$
(M1)
$=0.935$

Note: For Q12(a) (i) - (iii) and (b) (ii), award A1 for correct endpoints and, if correct, award $\boldsymbol{A 1}$ for a closed interval. Further, award A1AO for one correct endpoint and a closed interval.
12. (a) (i) $-4 \leq y \leq-2$

A1A1
(ii) $\quad-5 \leq y \leq-1$ A1A1
(M1)
(iii) $-3 \leq 2 x-6 \leq 5$

Note: Award $\boldsymbol{M 1}$ for $f(2 x-6)$.

$$
\begin{aligned}
& 3 \leq 2 x \leq 11 \\
& \frac{3}{2} \leq x \leq \frac{11}{2}
\end{aligned}
$$

[7 marks] continued...

Question 12 continued

(b) (i) any valid argument eg f is not one to one, f is many to one, fails horizontal line test, not injective

R1
(ii) largest domain for the function $g(x)$ to have an inverse is $[-1,3]$ A1A1
(iii)

$$
\begin{array}{ll}
\text { y-intercept indicated (coordinates not required) } & \text { A1 } \\
\text { correct shape } & \text { A1 } \\
\text { coordinates of end points }(1,3) \text { and }(-1,-1) & \text { A1 }
\end{array}
$$

Note: Do not award any of the above marks for a graph that is not one to one.

Question 12 continued
(c) (i) $y=\frac{2 x-5}{x+d}$

$$
(x+d) y=2 x-5
$$

Note: Award M1 for attempting to rearrange x and y in a linear expression.

$$
\begin{align*}
& x(y-2)=-d y-5 \tag{A1}\\
& x=\frac{-d y-5}{y-2} \tag{A1}
\end{align*}
$$

Note: x and y can be interchanged at any stage

$$
h^{-1}(x)=\frac{-d x-5}{x-2}
$$

Note: Award A1 only if $h^{-1}(x)$ is seen.
(ii) self Inverse $\Rightarrow h(x)=h^{-1}(x)$
$\frac{2 x-5}{x+d} \equiv \frac{-d x-5}{x-2}$
$d=-2$
(iii) METHOD 1

$$
\begin{align*}
& \frac{2 k(x)-5}{k(x)-2}=\frac{2 x}{x+1} \tag{M1}\\
& k(x)=\frac{x+5}{2}
\end{align*}
$$

METHOD 2

$h^{-1}\left(\frac{2 x}{x+1}\right)=\frac{2\left(\frac{2 x}{x+1}\right)-5}{\frac{2 x}{x+1}-2}$
$k(x)=\frac{x+5}{2}$
13. (a) $f^{\prime}(x)=30 \mathrm{e}^{-\frac{x^{2}}{400}} \cdot-\frac{2 x}{400}\left(=-\frac{3 x}{20} \mathrm{e}^{-\frac{x^{2}}{400}}\right)$
M1A1

Note: Award M1 for attempting to use the chain rule.

$$
f^{\prime \prime}(x)=-\frac{3}{20} \mathrm{e}^{-\frac{x^{2}}{400}}+\frac{3 x^{2}}{4000} \mathrm{e}^{-\frac{x^{2}}{400}}\left(=\frac{3}{20} \mathrm{e}^{-\frac{x^{2}}{400}}\left(\frac{x^{2}}{200}-1\right)\right)
$$

Note: Award M1 for attempting to use the product rule.
(b) the roof function has maximum gradient when $f^{\prime \prime}(x)=0$

Note: Award (M1) for attempting to find $f^{\prime \prime}(-\sqrt{200})$.

EITHER

$=0$
A1

OR

$$
f^{\prime \prime}(x)=0 \Rightarrow x= \pm \sqrt{200}
$$

THEN

valid argument for maximum such as reference to an appropriate graph or change in the sign of $f^{\prime \prime}(x)$ eg $f^{\prime \prime}(-15)=0.010 \ldots(>0)$ and $f^{\prime \prime}(-14)=-0.001 \ldots(<0)$ R1
$\Rightarrow x=-\sqrt{200}$ AG
continued...

Question 13 continued
(c) $A=2 a \cdot 30 \mathrm{e}^{-\frac{a^{2}}{400}}\left(=60 a \mathrm{e}^{-\frac{a^{2}}{400}}=-400 f^{\prime}(a)\right)$
(M1)(A1)

EITHER

$$
\frac{\mathrm{d} A}{\mathrm{~d} a}=60 a \mathrm{e}^{-\frac{a^{2}}{400}} \cdot-\frac{a}{200}+60 \mathrm{e}^{-\frac{a^{2}}{400}}=0 \Rightarrow a=\sqrt{200}\left(-400 f^{\prime \prime}(a)=0 \Rightarrow a=\sqrt{200}\right)
$$

OR

by symmetry eg $a=-\sqrt{200}$ found in (b) or $A_{\max }$ coincides with $f^{\prime \prime}(a)=0$ R1
$\Rightarrow a=\sqrt{200}$

THEN

$A_{\text {max }}=60 \cdot \sqrt{200} \mathrm{e}^{-\frac{200}{400}}$
$=600 \sqrt{2} \mathrm{e}^{-\frac{1}{2}}$
(d) (i) perimeter $=4 a+60 \mathrm{e}^{-\frac{a^{2}}{400}}$

Note: Condone use of x.
(ii) $I(a)=\frac{4 a+60 \mathrm{e}^{-\frac{a^{2}}{400}}}{60 a \mathrm{e}^{-\frac{a^{2}}{400}}}$
graphing $I(a)$ or other valid method to find the minimum
(iii) area under roof $=\int_{-20}^{20} 30 \mathrm{e}^{-\frac{x^{2}}{400}} \mathrm{~d} x$
= 896.18...
area of living space $=60 \cdot(12.6 \ldots) \cdot \mathrm{e}^{-\frac{(12.6 . .)^{2}}{400}}=508.56 \ldots$
percentage of empty space $=43.3 \%$

